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Abstract-This paper offers a theoretical study on the probabilistic nature ofcritical loads (buckling
loads) ofstructures subject to normally distributed initial imperfections. Explicit form ofprobability
density function of critical loads are derived for various types of critical points. Double bifurcation
points of structures with regular-polygonal symmetry are dealt with by means of the group-theoretic
bifurcation theory. The distribution ofminimum values of the critical loads is investigated to present
a statistical design index. The theoretical and empirical probability density functions for simple
structures are compared to show the validity and effectiveness of this method. The method is quite
efficient when it is directly applicable; otherwise, the explicit forms, at least, can greatly supplement
the inefficiency of the conventional random method.

I. INTRODUCTION

Initial imperfections of members and of materials of structures make their critical loads
(buckling loads) essentially uncertain and indeterministic. The method of random initial
imperfections with known probabilistic properties, which obtains these loads numerically
or experimentally for a number of random initial imperfections, would reflect their pro­
babilistic nature [see e,g. Elishakoff (1979, 1983), Elishakoff and Arbocz (1982), Elishakoff
et al. (1987), Lindberg (1988), Kirkpatrick and Holmes (1989), and Arbocz and Hoi
(199 I)]. The stochastic finite-element method has been developed to incorporate the random
properties of structures and soils in analysis [see e.g. Astill et al. (1972) and Baecher and
Ingra (1981)].

The imperfection sensitivity laws by Koiter (1945) deterministically relate critical
load to imperfection magnitude for a given mode of imperfection when the magnitude is
infinitesimally small. Roorda and Hansen (1972) extended these laws to a single mode
normally-distributed initial imperfection and successfully arrived at failure probabilities,
without resort to the asymptoticity assumption of imperfection magnitude. Elishakoff et
al. (1987), following the pioneering work of Bolotin (1958), extended these laws to multi­
mode initial imperfections subject to multivariate normal distributions to obtain reliability
curves with reference to experimental samples. Arbocz and Hoi (1991) utilized measured
initial imperfections ofaxially compressed cylindrical shells to evaluate the statistical nature
of their critical loads with the use of the first-order, second-moment method [cf Karadeniz
et al. (1982)].

In order to develop a potential design alternative, which can efficiently implement a
stochastic viewpoint, the authors have presented a series of asymptotic theories on initial
imperfections by extending the Koiter laws. Here the word asymptotic indicates that the
results hold accurately for an (infinitesimally) small imperfection magnitude and in a
sufficiently close neighborhood of the critical point. At the expense of the asymptoticity
assumption, the results obtained have become quite general and simple, thus achieving a
deeper insight, as was the case with the Koiter laws. The critical initial imperfection vector,
which achieves the steepest decline of critical load under the constraint of a constant norm,
was explicitly obtained in Ikeda and Murota (l990a) for various kinds of simple critical

t Part of this paper has been presented in the Second Japan-Korea Joint Seminar on Steel Bridges, July 1992.
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points, and in Murota and Ikeda (1991) for group-theoretic double points, which appear
generically for (dome and shell) structures with regular-polygonal symmetry. The bifur­
cation equation, which characterizes relevant bifurcation behavior, was derived by expand­
ing the equilibrium equations into power series in the vicinity of the critical point, and by
eliminating the passive coordinates. This process of deriving the bifurcation equation is
called the Lyapunov-Schmidt-Koiter decomposition [see e.g. Sattinger (1979), Golubitsky
and Schaeffer (1985), and Golubitsky et al. (1988)]. Then from this equation the explicit
form of the critical load reduction, and, in turn, that of the critical initial imperfection
vector are obtained in an asymptotic sense. In particular, for the double points, the so­
called group-theoretic approach in bifurcation theory is vital in the investigation of the
vanishing or nonvanishing of the terms in the equation [see e.g. Sattinger (1979), Golubitsky
and Schaeffer (1985), Golubitsky et al. (1988), Healey (1988), and Dinkevich (1991) for
mathematical backgrounds. See also Ikeda et al. (1991), and Murota and Ikeda (1991,
1992) for an exposition of its application to structures].

These studies for the critical imperfection revealed that the space of imperfection
vectors is to be divided into two orthogonal subspaces : the subspace that affects the critical
load and the other that does not. The former subspace is spanned by the critical imperfection
vector(s). Based on this result, when an initial imperfection vector is assumed to be randomly
distributed under the constraint ofa constant norm, explicit forms of the probability density
function ofcritical loads have been obtained in Ikeda and Murota (1991) for simple points,
and in Murota and Ikeda (1992) for the double ones. The knowledge of these forms, which
yield various statistical properties, such as the expected value and the variance, of the
critical loads is quite comprehensive and is expected to be of great assistance in design.
Such an assumption on the distribution, however, is suited for the theoretical derivation
but is not very realistic in that the norm in general changes randomly.

In order to address this problem, we present a theoretical method on normally dis­
tributed initial imperfections. Asymptotically the increment of the critical loads for the
critical points can be expressed as a function in one or two variables (according to whether
the point is simple or double), which is (are) also subject to a normal distribution. This
makes it possible for various types ofcritical points to derive the probability density function
and relevant stochastic properties of the critical loads. Explicit formulae for reliability
functions are presented for some of the critical points, while the integral forms of the
functions are applicable for the remaining ones. In addition, in order to reduce an analytical
task we present a semi-empirical evaluation procedure which obtains this function with
reference to the sample mean and the sample variance of critical loads observed in an
experiment or an analysis. The distribution of the minimum values of the critical loads is
investigated with the hope of providing a design index based on a firm statistical theory.
The present method is applied to simple example structures to show its usefulness.

2. FORMULATION

This section offers the formulation of the present problem, due to Murota and Ikeda
(1992), which is applicable both to simple and double critical points. We consider a system
of nonlinear equilibrium equations

H()" U, v) = 0, (1)

where A. denotes a loading parameter; u indicates an N-dimensional nodal displacement (or
position) vector; and v a p-dimensional imperfection pattern vector. We assume H to be
sufficiently smooth (or even analytic) and that the eigenvalues of the tangent stiffness
(Jacobian) matrix

(DB)J = J(A., u, v) = (Jij) = 73u
j
'

of H for the perfect system are all positive at the initial state (A., u) = (0,0). This means
that the system is originally (subcritically) in a stable state.
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For a fixed v, a set of solutions ()" u) of the above system of equations makes up
equilibrium paths. Let (A.c, nc) = (Ac(v), nc(v)) denote the first critical point on the main path
ofengineering interest [(')c refers to the critical point], governing the critical load (buckling
load) of the structure with an imperfection pattern vector v. The tangent stiffness matrix is
singular at (Ae, Dc, v) :

det [J(),o Dc, v)] = O. (2)

In particular, this is satisfied by the critical point (...1.2, u2, VO) of the perfect system [(.)0
refers to the perfect system]. It is assumed that we can choose ~i (i = I, ... , M) to be M
critical eigenvectors of J O such that

{!~j = bij , i,j = 1, ,M,

~lJo=oT, i=I, ,M,

where M is the multiplicity of the critical point and (jij is the Kronecker delta. Define by

M

P = L ~i~l
i= 1

(3)

the orthogonal projection matrix onto ker «]O)T), which characterizes the influence of
initial imperfections.

We write

v = vO+ed

and

(4)

where e( > 0) denotes the magnitude of the initial imperfection; Xc means the increment of
the critical load ; and

indicates its pattern (normalized in an appropriate way).
We are interested in the stochastic behavior of the critical load Ac for random imper­

fections v. To be more specific, we consider the case where the imperfection magnitude e is
small and where the imperfection mode d is subject to a multivariate normal distribution
N(o, W- 1

). Here N(e, W- I) denotes the normal distribution with a mean e and a variance­
covariance characterized by a positive definite matrix W·· 1. The theoretical development
will be continued in Section 3 (for simple points) and in Section 4 (for double points). The
analyses are asymptotic in the sense that they are valid only when e is small.

As we will see later, the imperfection sensitivity matrix defined by

B= (Bij ) = (~Hil li= 1, ... ,N;j= 1, ... ,P)
uVj (A,u,v) = ().~,u2,vo) •

(5)

plays the primary role in evaluating the influence of d on the critical load. For truss
structures the explicit forms of the matrix B for various kinds of imperfection variables
have already been obtained in Ikeda and Murata (1990b).

3. THEORY FOR SIMPLE CRITICAL POINTS

An asymptotic theory for normally distributed initial imperfections, valid in the neigh­
borhood of a simple critical point of the perfect system, is presented in this section. This
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serves as an extension of Ikeda and Murota (1991) for initial imperfections uniformly
distributed on a sphere of II d II = constant. The explicit form of probability density function
and relevant statistical properties are derived in order to reveal the stochastic nature of
critical loads.

As has been made clear in Murota and Ikeda (1991), the asymptotic behavior of the
increment (increase or decrease) Xe of the critical load Ae of the imperfect system for simple
critical points (and also for double ones to be dealt with in Section 4) is known to be
expressed as

(6)

when a is small. The increment Xe is characterized by the exponent p and the coefficient
C(d), the explicit forms of which for simple critical points are given as followst [cf Koiter
(1945) and Ikeda and Murota (1990a)]:

{

p = 1,

P = 1/2,

P = 2/3,

P = 2/3,

C(d) = -Coa

C(d) = - Colal 1
/
2

C(d) = - Co' a2
/
3

C(d) = Co' a 2
/
3

at limit point,

at asymmetric bifurcation point,

at unstable-symmetric bifurcation point,

at stable-symmetric bifurcation point.

(7)

Here Co are positive constants, and the coefficients C(d) depend on d through one variable

where ~ = ~1; and

p

a == CBd = L Cidi ,
i= 1

(8)

Since the increment Xe in eqn (6) for the stable point corresponds to the limit point for the
secondary imperfect path, which does not have physical meaning, we hereafter exclude this
point.

Denote by fd;(d;) the probability density function of d;(i = 1, ... ,p). Then by eqn (8)
the probability density function of a is given as the convolution integral of the scaled
fd(dJ (i = 1, ... ,p). This convolution could be computed via the Fourier transformation.
Then a simple transformation from a to the critical load Ae, through eqns (6) and (7), yields
the probability density function of Ae as we will see later. It is also remarked that the central
limit theorem (Kendall and Stuart, 1977) says that under fairly mild conditions we may
regard a as being normally distributed when p is large.

3.1. Stochastic properties of the critical load
An asymptotic theory for initial imperfections ad subject to the normal distribution

N(o, a2W- I
) is presented in this subsection. The variable a of eqn (8), which is a sum of

normally-distributed variables c;d; (i = 1, ... ,p), is subject to a normal distribution N(O, In
with mean °and variance

(9)

A normalized variable

t It is to be noted that for the asymmetric bifurcation point the increment Xc in eqn (6), and hence all the
results in this section, has been defined as the conditional distribution given that a limit point exists on the primary
branch of the imperfect system.
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is subject to the standard normal distribution N(O, 1); the probability density function of
ii is expressed as :

We introduce a normalized critical load (increment)

at limit point (p = I),

at asymmetric bifurcation point (p = 1/2),

at unstable-symmetric bifurcation point (p = 2/3),

(10)

where

byeqn (9). Then the formula

(11)

-00«<00

-00«<0

-00«<0

at limit point,

at asymmetric bifurcation point, (12)

at unstable-symmetric bifurcation point

yields the probability density function of (. Then the cumulative distribution function F,(O
of ( is obtained by

(13)

and, in tum, the reliability function R,m of ( is evaluated by:

(14)

which stands for the probability of failure, that is, that of the critical load exceeding the
designed one. From eqns (12), (13) and (14) we obtained !r,m, R,m, the expected value
£[(1, and the variance Var [(], for various kinds of simple critical points as below, where
r( .) denotes the gamma function and

I, I ((2)<pm = -00 ~exp -2- d(

indicates the error function.
Limit point:

I ((2)!r,(O = ~exp -2-' - 00 < ( < 00 (standard normal distribution N(O, I)), (15)
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R,(O = 1-<1>(0,

E[(] = 0,

(16)

2
E[[(I] = h:.'

y2n

Var [(] = E[(2] = I.

Asymmetric point of bifurcation (conditional on the existence of a limit point) :

41(1 (_'4)f,CO = ~exp -2-' -00 < « 0,

R,(O = 1- 2<1>( _(2),

E[(] = --;4 rG) = -0.822,

E[Y2] _ 2
l, -j2n'

Var['] = (0.349)2.

(17)

(18)

Unstable-symmetric point ofbifurcation:

31'1 1
/
2 (-1'[3)

!cCO = ~ exp -2-, - 00 < ( < 0,

R,CO = 1- 2<1>( _ 1'1 3
/
2),

E[(] = _;6 r(V = -0.802,

E[e] = ~rG) = 0.831,

Var['] = (0.432)2.

(19)

(20)

The probability density functions!cCO and the reliability functions R,CO of these three
types of critical points are plotted in Figs lea) and (b), respectively. Note that ( = 0

Asymmetric
bif. pt.

Limit point

G (a)

~ 11--1--II-\--t---+---+---j

~3 -2 -I 0 1 2 3 0_3 -2 -1 0 1 2 3
Normalized critical load increment, ( Normalized critical load increment, (

Fig. 1. Probability density functions !r(O and reliability functions R,(O of normalized critical
load increment' for various types of simple critical points. (a) Probability density functions.

(b) Reliability functions.
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corresponds to the critical load A = Ag for the perfect structure, and for bifurcation points
the reliability of the structure is nullified at ( = 0 (R,(O) = 0). For the appropriately nor­
malized critical load (, its probability density function fr.(O is independent of individual
structures and is unique for each type ofcritical point. Details of structures, such as stiffness
distribution, geometrical configuration, material property, and so on, do not affect the form
of this function but the values of Ag and CouP.

The probability density function of the critical load Ac is evaluated to be

- 00 < Ac < 00 at limit point,

- 00 < Ac < Ag at asymmetric bifurcation point, (21)

- 00 < Ac < Ag at unstable-symmetric bifurcation point,

where

The mean E[AcJ of Ac is computed as

(22)

at limit point,

at asymmetric bifurcation point,

at unstable-symmetric bifurcation point,

(23)

and the variance Var [AcJ of Acas

at limit point,

at asymmetric bifurcation point,

at unstable-symmetric bifurcation point.

(24)

From eqns (16), (18) and (20), the reliability function of the critical load Ac becomes

1-<I>(Ac - Ag)
Cou

( (
A _ A0)2)

1-2<1> - ~ou\/~

( \
A_AOI3/2)

1-2<1> - ~OU2/~

- 00 < Ac < 00 at limit point,

- 00 < Ac < Ag at asymmetric bifurcation point,

- 00 < Ac < Ag at unstable-symmetric bifurcation point.

3.2. Evaluation of probability density function
We here present theoretical and semi-empirical evaluation procedures for the parameter

Cou
2 in eqns (10) and (22) defining the probability density function, while the conventional

way to obtain the histogram based on random initial imperfections is called the empirical
evaluation.

The theoretical one is applicable when the equilibrium equations (1) can be differ­
entiated to arrive at the imperfection sensitivity matrix Bin eqn (5). Such a differentiation
can be carried out for each element to obtain element matrices for B, and these matrices
are assembled for the whole structure to obtain B, in compatibility with the framework of
finite element analysis [see Ikeda and Murota (1990b) for its application to trusses]. Then

$AS 30:18-8
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eqn (11) yields (12; Co is evaluated with reference to eqns (6) and (7) by obtaining the
critical load Ac from eqns (1) for a given imperfection mode d. Thus the theoretical evaluation
of the probability density function is quite simple and straightforward.

The semi-empirical evaluation procedure is suggested for use when B cannot be com­
puted, as is usually the case with experiments and highly nonlinear analyses. In this regard
this procedure will be quite suited for practical use. For a series of random imperfection
modes d chosen based on a known normal distribution, critical loads Ac of a structure are
evaluated by solving eqns (1). Then the sample mean Esample[Ac] and the sample variance
Varsample [Ac] are computed based on random AcS computed in this manner. The critical load
},g for the perfect system and the variable C o(1P are computed from eqns (23) and (24) as

{

(Varsample[},cl) 1/2 at limit point (p = I),

Co(1P = (VarSample[Ac]) 1/ 2/0.349 at asymmetric bifurcation point (p = 1/2),

(VarsamPle[Acl) 1/2/0.432 at unstable-symmetric bifurcation point (p = 2/3),

{

EsamPle[AC] at limit point,

Ag = Esample[Ac] + 2.35 (VarsamPle[Ac]) 1/2 at asymmetric bifurcation point,

Esample[Acl + 1.86 (Varsamplc[Ac]) 1/2 at unstable-symmetric bifurcation point.

(25)

(26)

The substitution of the values of Co(1P and Ag into eqns (21) and (22) leads to the semi­
empirical probability density functionh,(Ac) of critical load Ac•

3.3. Distribution ofminimum values
In this section we show that the minimum critical load achieved by a series of random

imperfections d will serve as an index of extreme values. Such an index will be of great
assistance in developing a sound designing procedure based on a firm statistical standpoint.

Let (K be the minimum value of the normalized critical load ( of eqn (10) attained by
K independent random imperfections. The asymptotic form of the cumulative distribution
function Fd(K) of (K (as K ~ + <Xl) can be derived as [see Theorem 2.1.6 of Galambos
(1978) ; also Kendall and Stuart (1977)]

(27)

at limit point,

at asymmetric bifurcation point,

at unstable-symmetric bifurcation point,

with

-(210 K)I/2[1- IOgIOgK+IOg(4n)]
g 410gK

-[210 (2K)]1/4[1-- log log (2K)+log (4n)] 1/2
g 410g(2K)

-[210 (2K)]1/3[1- log log (2K)+log (4n)] 2/3
g 410g(2K)

{

(210g K) - 1/2 at limit point,

dK = ![210g (2K)] - 3/4 at asymmetric bifurcation point,

i[210g (2K)] - 2/3 at unstable-symmetric bifurcation point,

from the concrete forms of fr.<O given in eqns (15), (17) and (19). The limit distribution
(27) is called the double exponential or the Gumbel distribution. Then, roughly speaking,
(K is of the order of CK for large K, which we denote as

(28)
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By means of eqns (4), (10), (25) and (26), we can rewrite eqn (28) for the minimum
critical load (Ach attained by K independent random imperfections as below:

(Ac)K '" A~+CKCO(TP=

{

EsamPle[Ac] +CK (Varsample[AcD 1/2

Esamp\e[Ac] + (2.35 + cK/0.349) (Varsample[AcD 1/2

Esample[Ac] + (1.861 +cK/0.432) (Varsample[AcD 1/2

at limit point,

at asymmetric bifurcation point,

at unstable-symmetric bifurcation point,

as K --+ + 00. We can use this equation to simulate (Ac)K with reference to the sample mean
Esample[Ac] and the sample variance Varsample[Ac]' It should be emphasized here that these
sample values may be based on a far smaller number of random imperfections than K. This
shows the simplicity and the efficiency of the present method.

4. THEORY FOR DOUBLE CRITICAL POINTS

We are interested in the system (1) of nonlinear equilibrium equations of a structure with
group symmetry, for which multiple critical points appear generically. Following Murota
and Ikeda (1991, 1992) we assume that the symmetry of the equations is described mathema­
tically by the equivariance of the equilibrium equations (1) to a finite group G, that is,

T(g)H(A, u, v) = H(A, T(g)u, S(g)v), 9 E G, (29)

in terms of an N x N unitary matrix representation T(g) of G on the N-dimensional space
of the nodal displacement vector u, and another p x p unitary representation S(g) of G
on the p-dimensional space of the imperfection parameter v. Remember that any finite­
dimensional representation is equivalent to a unitary representation.

We also assume that the displacement vector u~ at the critical point and the imperfection
vector V

O for the perfect system are G-symmetric. That is, we assume

L(U~ ; G, T) = L(VO
; G, S) = G,

where

L(U; G, T) = {gEGIT(g)u = u} (30)

denotes the subgroup of G which expresses the symmetry of u, and L(V; G, S) is defined
similarly.

When the initial imperfection vector sd is subject to a normal distribution N(o, S2W- I),
we adopt an additional assumption on the compatibility of the variance-covariance matrix
w- I with the group symmetry:

S(g) WS(gf = W, gE G. (31)

Note that this is satisfied if W is equal to the unit matrix Ip of order p, that is, each
component of d is subject to the standard normal distribution.

Many dome and shell structures have regular-polygonal symmetry. To describe such
symmetry, we henceforth assume G to be the dihedral group Dn of degree n defined by

Dn = {e,rn, ... ,r;--l,s,srn, ... ,sr;-I} = {r;,sr;lk=O,I, ... ,n-l}

with r; = S2 = (srn)2 = e. Here e denotes the unit transformation, the element s stands for
the reflection with respect to the XZ-plane, and r; for the counter-clockwise rotation around
the Z-axis at an angle of 2nk/n (k = 1, ... , n - 1). Note that Dn indicates the invariance
with respect to n rotations and n reflections.

Recall that the tangent stiffness (Jacobian) matrix of the perfect system is singular at
the critical point (Ag, ug), i.e. eqn (2) holds for JO. It follows from the Dn-equivariance (29)
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that ker «JO?) is D,,-invariant, where ker «JO)T) denotes the kernel of (J0)T, spanned by
the critical eigenvectors ~i (i = I, ... , M). Critical points of a D,,-equivariant system are
generically either simple (M == I) critical points or so-called group-theoretic double (M = 2)
points of bifurcation. In this paper a double point will mean a group-theoretic double point.
This is a consequence of the fact that the irreducible representations of D" are necessarily
either one- or two-dimensional.

With a critical point, we associate a subgroup of D" that represents the symmetry of
the kernel ofr, or of the vectors u belonging to ker(JO). We denote this subgroup as

by extending the notation (30). Note that 1: (ker (JO» =1: (ker «(J0?».
The explicit form of 1: (ker (JO»is known from the group representation theory

at limit point,

at simple-symmetric point ofbifurcation,

at double point ofbifurcation,

(32)

where m is a divisor of n; and

D?;/2 = {r?;k, sr?;k+ I Ik = 0, I, ... ,n/2-l};

Cm = {r:n/mlk=O,I, ... ,m-l}.

It will turn out that n/m is an important index characterizing a double critical point. The
integer m in eqn (32) is to be determined in view of the symmetry of ker «JO)T), that is,
the symmetry of the critical eigenvector. In addition, we choose ~ I in such a way that
T(s)~1 = ~l'

4.1. Stochastic properties of the aiticalload
For group-theoretic double points of bifurcation, C(d) and p in eqn (6) vary with the

values of index n/m as follows [cf Murata and Ikeda (1991)]

{

p = 2/3, C(d) = -Co'a2
/3

P = 2/3, C(d) = Co' a2P

P = 1/2, C(d) = -T(PBd/IIPBdil)Co'a 1
/
2

P = 2/3, C(d) = -i'(PBd/IIPBdII)Co'a2
/3

if n/m ~ 5 and unstable,

ifn/m ~ 5 and stable,

ifn/m=3,
ifn/m = 4,

(33)

where Co are (possibly different) positive constants; T > 0 and i' are nonlinear functions in
PBd/llPBdH (where II-II denotes the Euclidian norm); and

a = IIPBdii.

We decompose Was

and define a transformation

d= Yd. (34)

This new variable ais subject to the standard normal distribution N(o, Ip}.

As we have seen in eqn (33), the change t in the critical load is primarily governed by
a = /IPBdl/. It is proved in Section 4.2 of Murota and Ikeda (1992) that I/PBdl/ 2 can be
expressed as
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(35)

with the use of the critical eigenvectors ~ I and ~ 2, d= Vd of eqn (34), mutually orthogonal
p-dimensional unit vectors '1 I and '12 which are independent of d, and

Then, as is well known,

(36)

is subject to the exponential distribution, or the X2 distribution of two degrees of freedom.
The probability density function of x is given as:

fAx) = !exp ( ~x). (37)

With the use of x of eqn (36) in eqn (33), we can introduce the normalized critical load
increment as

{

_X1/3

X X l/3
( __C__

- CouP - _rx 1/4

-ix 1/3

if n/m ~ 5 and unstable (p = 2/3),

if n/m ~ 5 and stable (p = 2/3),

if n/m = 3(p = 1/2),

if n/m = 4(p = 2/3),

(38)

where u = iJe. As may be apparent from this equation, the explicit form of probability
density function fc.(() of ( depends entirely on the value of the index n/m.

4.1.1. Case 1: n/m ~ 5. For an unstable-double point with n/m ~ 5, combining eqn (37)
with eqn (38) leads to the probability density function fc.(O, the reliability function R,(O,
the expected value Era, and the variance Var ra of (:

-00 < « 0, (39)

- 00 < ( < 0,(- 1'/3)
R,(O = l-exp -2- ,

Er(] = -2 1/3r(i) = -1.l3,

Ere] = 22/3rG) = 1.43,

(40)
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1. O...-------r-----,.---....,
(a)

0·l!.3 -2 -1 0
Normalized critical load increment, (

1. 0 (b)

O·l!.3 -2 -1 0
Normalized critical load increment, (

Fig. 2. Probability density function h<O and reliability function R(<O of normalized critical load
increment' for double critical points with njm ~ 5. (a) Probability density function. (b) Reliability

function.

Namely, -, is subject to the Weibull distribution. Figures 2(a) and (b) show the shape of
the probability density function fr.<O and the reliability function R,<O offr.(O, respectively.

A simple calculation yields various statistical properties of the critical load Ac as below:

(41)

4.1.2. Case 2: n/m = 3. As shown in eqn (38), , for n/m = 3 is given by

where it is known (Murota and Ikeda, 1991) that

(i denotes the imaginary unit) and 1:(t/J) > 0 is a solution to the equation

27 6 9 2 1
g(1:) = -1: - -1: - - = 2 cos (3t/J)- 256 8 1: 2 •

(42)

(43)

(44)

It is noteworthy that the variables 1:(t/J) and x l/4 are statistically independent. The
probability density function of b == (a/ii) 112 = X

l/4 is computed with reference to eqn (37)
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as

j;,(b) = 2b 3 exp (_;4). 0 < b < 00.

The mean and variance of b are evaluated to be

E[b] = 21/4rG) = 1.08,

Var[b] = .fl-J2[r(~)J = (0.302)2.
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On the other hand, on noting that t/J of eqn (44) is uniformly distributed in the range
o< t/J < 2n, we can arrive at the probability density function of't" as follows:

with

j,('t") _ ~ dt/J _~. g'('t")
t - 2n d't" - 2n Jl-g('t")2/4'

't"min < 't" < 't"ma"

2
tmin = j3' t max = 2.

The density functions fc(t) and j;,(b) are depicted in Figs 3(a) and (b). By numerical
integration we obtain

E[t] = 1.77, Var[t] = (0.221)2.

It should be noted that 't" lies in a bounded positive interval away from zero, and therefore
plays only a secondary role compared with b.

Then the probability density function fr.(O of the normalized critical load increment

,= -bt

is given by

4 9 1.5
l:' (a) ~ (b)

!b(b):J: -;;;.
ci" ~
0

of'13 <:: 1.0<:: .2.e ..
u

~ 2
<::

'00 .e
<:: ~.,

"0 '00

~ ~ 0.5

~
"0

~
..0 :::I
0 ~...

0.- ..0

O2/..;'3 2
g 0.0

4p., -

T

Fig. 3. Probability density functions of nonnalized critical load increment' for double critical points
with n/m = 3. (a) /,(1:). (b) fi,(b) and Jim.
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(45)

This shows that the probability density function of(is independent of individual structures,
just as in Case 1. A numerical integration yields

E[(] = 1.91, Var [(] = (0.590)2,

E[A.cl = Ag-1.91Cou I/2 , Var[Acl = (0.590Cou
l/2 )2.

4.1.3. Case 3: n/m = 4. As shown in eqn (38), ( for n/m = 4 is given by

where

t/J = arg(~TBd+i~1Bd)

(46)

and f(t/J) is a solution to an algebraic equation, which varies with individual structures [see
Murota and Ikeda (1991) for details]. We normalize f(t/J) in such a manner that its maximum
f max is equal to unity.

As in the case of njm = 3, the variables f(t/J) and b = X ll3 are statistically independent.
The distribution of b coincides with the one described in eqn (39). The probability dis­
tribution of f, and hence that of (, vary with individual structures.

If necessary, the probability distribution of ( may be empirically evaluated as follows.
First compute Xc for the imperfection modes

for sufficiently many values of cp (0 ~ cp < 2n). Since IIPBd*(cp) II is independent of cp, this
gives the distribution of f. Then the distribution of ( is computed from the formula (45).

The values of average E[(] and variance Var [(], which vary with individual structures,
must be obtained through numerical integration for each case. For the theoretical evalu­
ation, the value of Co is evaluated from eqn (38) for CPo that maximizes IXcl, and hence with
f(cpo) = f max = 1.

4.2. Evaluation of probability density function
As explained in Section 4.1 the theoretical evaluation is also applicable to double

critical points. The form of the probability density functionfc«() is unique for njm =1= 4, but
is dependent on individual structures for njm = 4. Its form is explicitly given for njm ~ 5,
whereas numerical integration by eqn (45) is needed for njm = 3 and 4.

The semi-empirical evaluation similar to the one explained in Section 3.3 is also
applicable for double critical points. For n/m =1= 4 the critical load A.g for the perfect system
and the variable COUI>, which determines the semi-empirical probability density function of
load incrementXe by eqn (41), are computed from eqns (42), (43) and (46) as

{
(VarsampleP.C]) 1/2/0.409, njm ~ 5(p = 2/3),

CouP = (Varsample[Acl) 1/2/0.590, njm = 3(p = 1/2),

A. 0 _ {Esample[A.c] +2.75 (Varsample[A'c])If2, njm ~ 5,
c - Esample[A.c] +3.24 (VarSample[AcDl/2, njm = 3.

For njm = 4, instead, the values ofE[A.c] and Var [A.cl obtained though numerical integration
yield the values of CocP and Ag. It should be noted that the imperfection sensitivity matrix
B is needed for this case.
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4.3. Distribution of minimum values
For double critical points with n/m #- 4, the asymptotic formula (27) for the minimum

load (K achieved by K independent random imperfections also holds with

_ {-[210g K]I/3 ifn/m;::: 5,
C

K
- _ [2 logK] 1/4 if n/m = 3,

{
3[210g K]-2/3 ifn/m;::: 5,

dK = '1
~[2IogK]--,,4 ifn/m = 3.

For n/m ;::: 5, with reference to eqn (39), the probability distribution function of (K is
expressed as

(47)

and the differentiation of eqn (47) gives its probability density function

the shape of which is plotted in Fig. 4 for various values of K. The peak of this function
shifts toward - 00 and becomes sharper in association with the increase in K.

5. EXAMPLES

5.1. Asymmetric simple bifurcation point
Consider the propped cantilever of Fig. 5 comprising a truss member, simply supported

with a rigid foundation at node 1 and supported by horizontal and vertical springs at node
2. A vertical load Ais applied to the free node 2. This cantilever has also been put to use in
Ikeda and Murota (1990a, 1991) as an example for an asymmetric simple bifurcation point.

The system of equilibrium equations is

(1 1)(x-X I) (Fsx ) (0)H(A,u,v)=:EA Z-I Y_YI + F,y - A =0,

where

4

:3
~......

3d
00-5
c:

..,:;
$ 2
'00
c:
Q)

-0

~
:.0

cd
A
0....

0..

~3 -2 -1 0
Normalized minimum critical load, (K

Fig. 4. Probability density functions of the minimum critical load 'K attained by K independent
random imperfections for double critical points with n/m ." 5 (K = I, 10, 102, 103, 104

).

$AS 3O:18-C

(48)
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0: free node
.: fixed node

initial

2 X
( 0 .0) ~""'-..J\f\fV\I'-L--~

y

displaced

(0,1)

(a) Perfect system

(X1,Y 1 )

(b) Imperfect system

Fig. 5. Propped cantilever. (a) Perfect system. (b) Imperfect system.

u = (x, y)T is the location of node 2 after displacement, (Xi' Yi) is the initial location of node
i (i = l, 2), and Fsx and Fsy are the horizontal and vertical forces exerted by the springs,
respectively; E is the modulus of elasticity and A is the cross-section.

The equilibrium paths for the perfect cantilever expressed by eqns (48) consists of a
main path and a pair of bifurcation paths branching at an asymmetric simple bifurcation
point. The critical eigenvector at this point is ~ = (1, O)T and (A.2, x2, y2) = (EA, 0, 1/2).

We choose (Xi, Yi) (i = 1,2) as imperfection parameters, and define

as an imperfection parameter vector. In the perfect case, we have

We assume that

ed = v-vo

is subject to a multivariate normal distribution N(o, e2/4)' that is

(49)

First, following the theoretical evaluation, we obtain the probability density function
of critical load. The imperfection sensitivity matrix

o
-2

-1

° ~) (50)

is obtained by differentiating H in eqns (48) with respect to v and evaluating at the bifurcation
point [cfeqn (5)]. Use of eqns (49) and (50) in eqn (11) leads to
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K=lO
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100 f-----+--+----;

oL...-.-:1. .....

0.975

Critical load, >'c/(EA)
0.975

Critical load, >.c/(EA)

Fig. 6. The influence of the sample size K on the semi-empirical probability density function and
the histogram (10 5 samples; e = 10- 4

) for the propped cantilever (asymmetric simple bifurcation
point). Solid curve: theoretical probability density function; dashed curve: semi-empirical prob-

ability density function; histogram: numerical experiment.

Further, we solved eqns (48) for an arbitrarily chosen imperfection mode d = (1, I, -I,
_I)T and 8 = 10- 6

, which is sufficiently small as to make the asymptotic formula (6)
accurate, to arrive at

by eqns (6) and (7). The solution of this asymptotic relationship yields

Co ~ l.OEA.

Based on the values of Co and a 2 evaluated in this manner, we computed from eqn (21) the
theoretical probability density function f;.JAc ) of the critical load Acshown by the solid line
in Fig. 6.

Next, following the semi-empirical evaluation, which does not necessitate the com­
putation of Bin eqn (5), we have randomly chosen K = 10 5 imperfection modes subject to
the aforementioned normal distribution N(o, 8 2/4) for 8d and computed a set of critical
loads Ac for a constant imperfection magnitude B = 10- 2, 10- 3 and 10- 4, Table I lists the
sample mean Esample[Ac] and the sample standard deviation (Varsample[Ac]) 1/2 of these critical
loads. From eqns (25) and (26), we have empirically evaluated the values of A~ and Coa

l/2

also listed in this table. In association with the decrease of imperfection magnitude B, the
evaluated values converge to the exact values, in agreement with the asymptotic nature of
eqn (6). The semi-empirical evaluation seems to be quite accurate.

Table I. Evaluated values of :1.~ and Coa 1/2 (K = 10')

10- 2

e = 10- 3

10- 4

Exact values

0.905
0.969
0.990

(Var",mpl'[:1.ol) 1/2

3.87 X 10- 2

1.30 x 10- 2

4.15 X 10- 3

0.9964
0.9999
1.0000
1.0000

1.11 X 10- 1

3.73xlO- 2

1.19 x 10- 2

Co(a/e) li2

1.11
1.18
1.19
1.19
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K

Fig. 7. Comparison of (K and theoretical estimation (28) plotted against K in a semi-logarithmic
scale for an asymmetric simple bifurcation point (8 = 10- 6). (e): empirical (K; solid line: theoretical

estimation (28).

In order to see the improvement in the semi-empirical probability density function and
the histogram in association with the increase in the sample size K of random initial
imperfections, they are plotted in Fig. 6 based on the first K = 10, 102

, 103 and 104 random
samples for e = 10- 4. Although the improvement of the histogram seems to be slow, the
semi-empirical probability density functions (shown by the dashed lines) quickly approach
the theoretical one (the solid line). This implies the importance of the knowledge of the
explicit form of the probability density function, and hence of the present method.

We plotted in Fig. 7 for e = 10- 6 the comparison of the empirical minimum load 'K
achieved by K random imperfections [shown by the symbols (e)] and its theoretical
evaluation by eqn (28) (shown by the solid line). This evaluation is fairly consistent with
the empirical 'K'
5.2. Limit point and unstable-symmetric simple bifurcation point

We consider the regular octagonal truss dome in Fig. 8(a) as a numerical example for
a limit point and the hexagonal one in (b) for an unstable-symmetric simple point of

o free node
• fixed node

-x

.,

o free node
• fixed node

5050

y

t

,.

z

i
~~~-x• X

-x

• J50

y

i

(a) (b)

Fig. 8. (a) Regular-octagonal truss dome (limit point). (b) Regular-hexagonal truss dome (unstable­
symmetric simple bifurcation point).
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bifurcation. All members of these domes have the same modulus of elasticity E and the
same cross-section A. Uniform vertical loads 1 are applied to each free node for the former
dome (a); and vertical loads applied 0.52 to the crown node and 1 to other free nodes for
the latter (b). We have carried out a finite displacement analysis to solve equilibrium
equations (1) to note that the first critical load for the former is governed by a limit point
and for the latter by an unstable-symmetric simple bifurcation point.

We choose the initial location (Xi' Yi' z;) (i::= 1, ... , k) of nodes as imperfection par­
ameters (k = 17 for the former and k = 13 for the latter). The imperfection vector is subject
to a normal distribution N(o, e113k ) with e = 10- 3. We utilized the explicit form of the
imperfection sensitivity matrix B for these imperfection variables given in Ikeda and Murota
(1990b). Equation (l1) yields

1 _ {2.77 x 10-D(EA)1, at limit point,
(J - 3.49 x 1O-12(EA)1, at unstable-symmetric simple bifurcation point,

and eqn (6) gives

{
1.28, at limit point,

Co = 0.051 (EA) 1/3, at unstable-symmetric simple bifurcation point,

where the values of BT~ computed at the relevant critical point are used herein. The use of
these values in eqns (15) and (19) leads to the theoretical probability density function of'
shown as the solid lines in Fig. 9.

, ,,
I

0.5

1.0

(b) Unstable-symmetric
simple bifurcation point

1.5 K ", 10

(a) Limit point

0.2

0.4'

0. G.' u. a",-"",-'-'----'-_----'W--l

~ G.6,...1(""-=-2-5-----,1 ~ 1. 5r1(::-':-=-:::2")~----'

i ~~
~G.4 ]1.0 /
~ ~"I .~

..gjO.2 ~O.5

f i::1 O. 0 '2 G. 0t::..."=-_.........__---'--',,
~ . ~ ~

O. \l K '" 100 1. 5 K '" 100

0.0 -2 -1 0 I 2

Normalized critical load, (

1.(1

o.~Z' -1 1)

NOimalized critical load, (

Fig. 9. Comparison of theoretical and semi-empirical probability density function fc(0 and empirical
histogram of normalized cdtical load increment' (8 = 10-- 3). (a) Limit point (regular-octagonal
truss dome). (b) Unstable-symmetric simple bifurcation point (regular-hexagonal truss dome). Solid
curve: theoretical probability density function; dashed curve; semi-empirical probability density

function; histogram: numerical experiment.
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Table 2. Evaluated values of A~ and CouP (6 = 10- J)
(a) Limit point

10
K= 25

100
Exact values

3.746 X 10- 4

3.747 x 10- 4

3.747 x 10- 4
3.748 X 10- 4

5.02 X 10- 7

5.91 X \0--7
6.88 x \0- 7

6.74x 10- 7

(b) Unstable-symmetric simple bifurcation point

10
K= 25

\00
Exact values

7.635 x 10 4
7.639x 10- 4

7.648 x \0- 4

7.638 x \0- 4

2.20x\O-6
2.46 x 10-"
2.76 x \0-6
3.35 x 10- 6

7.68x\O-4
7.69 X \0--4
7.70 X 10- 4

7.70x 10- 4

5.09 X \0-6
5.68 X \0-6
6.37 X \0-6
7.74xlO- 6

For each dome, we have randomly chosen K = 10, 25 and 100 samples of ed subject
to N(o, e2/3d, and traced the equilibrium paths to compute the normalized critical load
increment (. Table 2 lists the improvement of the semi-empirical evaluation of A~ and Co(JP
by eqns (25) and (26). The histogram, the theoretical and the semi-empirical probability
density functions./(CO are compared in Fig. 9(a) for a limit point and in (b) for an unstable­
symmetric simple point of bifurcation. The theoretical and the semi-empirical curves are in
relatively good agreement with the observed histogram for each case.

5.3. Double critical (bifurcation) points
As numerical examples for double critical points we consider elastic n-bar truss tents

(n = 3, 4, 5) shown in Fig. 10, and regular n-gonal truss domes (n = 3, 4, 5) in Fig. 11
[these examples were also employed in Murota and Ikeda (1992)]. The truss tents are subject
to a vertical load ), applied to the top node, the truss domes to uniform vertical loads A
applied to each free node except for the center node. All members of these structures have
the same modulus of elasticity E and the same cross-section A for the perfect case. Such
symmetric stiffness distribution, accompanied by symmetries in geometry and loading, will
result in the group-equivariance (29) of the equilibrium equations of these truss structures.
Accordingly, the equations of n-bar truss tents (n = 3, 4, 5) and also those of regular n­
gonal truss domes (n = 3, 4, 5) are Dn-equivariant.

We define an imperfection parameter vector as

0: free nodes Y Y

>-:::"Od~+_x *_x
z
1
-x

Fig. \0. n-bar truss tents (n = 3, 4, 5).
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( c)

z

t

(b) y

~-,--x

(a)

0: free nodes
.: fixed nodes z

i

1~-:
0>

50 I 35.35 I 20 I 50 I 47.55 I

Fig. II. Regular n-gonal truss domes (n = 3, 4, 5). (a) Triangular. (b) Square. (c) Pentagonal.

where Ai (i = 1, ... ,p) are the cross-sections of the ith members. For the perfect structure,
we have

We assume that ed = v-vois subject to a multivariate normal distribution N(o, e2Ip ). Then
the group symmetry (31) of W is satisfied.

The finite displacement analysis of these trusses for the perfect cases (e = 0) was
performed to note that their critical loads are governed by unstable group-theoretic double
points of bifurcation, with CI-symmetric kernel space ker «JO)T) with m = 1. These double
points for n = 3, 4 and 5 correspond to the three cases n/m = 3, 4 and 5 in Section 4,
respectively.

For each truss structure, we have randomly chosen K = 100 imperfection modes of
ed = v-vo subject to a multivariate normal distribution N(o, e2Ip ) and computed a set of
critical loads' for a constant imperfection magnitude e = 10- 4

• Then ).2 and CouP are
computed based on the theoretical and empirical evaluation techniques. The empirical
histogram obtained from these 100 imperfections and the theoretical (for n/m #- 4) and
semi-empirical probability density function Jr,m are compared in Figs 12, 13 and 14 for

/. 0 (b)~ /. Or----,...----,
~ (a)
.;;;

..s
~
'00 0 5!----....."q.'-+---l\->,----l§ 0.5 .
'"0

~

J .
O. 0_4 -2 . 0 O. 0_4 0

Normalized critical load, ( Normalized critical load, (

Fig. 12. Comparison of probability density function!c«() and empirical histogram (100 samples) at
an unstable double point of bifurcation (n/m = 3). (a) 3-bar truss. (b) 3-gonal truss dome. Solid
curve: theoretical probability density function; dashed curve: semi-empirical probability density

function; histogram: numerical experiment.
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Normalized critical load, (
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Normalized critical load, (
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./
,/

Fig. 13. Comparison of probability density functionj,(O and empirical histogram (100 samples) at
an unstable double point of bifurcation (nlm = 4). (a) 4-bar truss. (b) 4-gonal truss dome. Dashed

curve: semi-empirical probability density function; histogram: numerical experiment.

1. 5 (b)
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91. 5 (a)
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'05
ijJ

"0

~ O. 51----+---I'{-f---+-frr------I
:E
~
o

d: 0.0 0='--'-_2---...J._
1
---=.,0 0.0 .......=_2:-----'_':"'"1--=0

Normalized critical load, ( Normalized critical load, (

Fig. 14. Comparison of probability density function/,(O and empirical histogram (100 samples) at
an unstable double point of bifurcation (nlm = 5). (a) 5-bar truss. (b) 5-gonal truss dome. Solid
curve: theoretical probability density function; dashed curve: semi-empirical probability density

function; histogram: numerical experiment.

n/m = 3,4 and 5, respectively. The theoretical values of Co(JP were used to normalize ( for
n/m -:f. 4. The theoretical and empirical functions are in fair agreement with the histogram
in each case. This shows the validity of the present method.

6. CONCLUSION

In this paper we have made a theoretical study on random initial imperfections of
(symmetric) structures to arrive at various kinds of stochastic properties of critical loads.
As we have seen in Figs 1 and 2, the probability density function for a limit point agrees
with the normal distribution, but those for the bifurcation points do not. This raises a
question on the validity of the simplifying assumption often utilized in the first-order,
second-moment method that critical loads are normally distributed (Arbocz and HoI, 1991).
Put otherwise, this shows the importance of the present method that can derive the explicit
form of probability density function by virtue of the asymptoticity assumption. Of course
the use of this assumption make the results less accurate, especially when imperfections are
large, in comparison with the former method that solves the governing nonlinear equations
to obtain critical loads. The tradeoff between these two methods will require further studies.

The theoretical method presented in this paper is readily applicable to truss structures,
for which the explicit forms of the matrix B have already been obtained in Ikeda and
Murota (l990b). It will be the natural course of future research to extend the theoretical
method to other structures by deriving the explicit form of the matrix for each structure.
It is to be emphasized here that the present formulation regarding Dn-equivariant structures
can be extended to those with other types of symmetries in a straightforward manner, when
the asymptotic behavior of the critical load depends solely on a = II PBd II.
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